Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Food Environ Virol ; 15(1): 61-70, 2023 03.
Article in English | MEDLINE | ID: covidwho-2175158

ABSTRACT

The performance of dishwashers in removing live viruses is an important informative value in practical applications. Since foodborne viruses are present in contaminated food surfaces and water environments. Insufficient washing of dishes typically makes a carrier of foodborne viruses. Dishwashers have shown excellent performance in removing bacterial pathogens, but very limited reports related to eliminate foodborne viruses on contaminated dish surfaces. Here, murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and human coronavirus 229E (HCoV-229E) were experimentally inoculated on the dish surfaces (plate, rice bowl, and soup bowl). Plaque assay, 50% tissue culture infectious dose (TCID50), and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to determine their removal efficiency of them through the general wash program of household dishwashers. Using titration assay, MNV-1 and HAV were reduced by 7.44 and 6.57 log10 PFU/dish, and HCoV-229E was reduced by 6.43 log10 TCID50/dish through the general wash program, achieving a ≥ 99.999% reduction, respectively. Additionally, RT-qPCR results revealed that viral RNA of MNV-1 and HCoV-229E reduced 5.02 and 4.54 log10 genome copies/dish; in contrast, HAV was not detected on any dish surfaces. This study confirmed the performance of household dishwashers in removing pathogenic live viruses through the general wash program. However, residual viral RNA was not sufficiently removed. Further studies are needed to determine whether the viral RNA can be sufficiently removed using combination programs in household dishwashers.


Subject(s)
Coronavirus 229E, Human , Hepatitis A virus , Norovirus , Viruses , Humans , Animals , Mice , Norovirus/genetics , Hepatitis A virus/genetics
2.
BMC Endocr Disord ; 22(1): 309, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2162353

ABSTRACT

The novel coronavirus COVID-19 has caused a global pandemic with many long-ranging effects on the physiological balance of the human body. The impact of COVID-19 on the thyroid axis remains uncertain. Our aim was to assess the long-term consequences of COVID-19 infection and its vaccination with thyroid hormones. Thirty laboratory-confirmed COVID-19-positive patients with no vaccination record, thirty COVID-19-negative patients with vaccination records, and ten healthy subjects were retrospectively, and cross-sectionally enrolled in this study. An ELISA assay was performed to evaluate thyroid function tests, including the total triiodothyronine (TT3), total thyroxine (TT4), and thyroid stimulating hormone (TSH). We found decreased levels of TT3, average or low plasma T4 levels, and standard or slightly decreased TSH levels in unvaccinated COVID-19-positive patients than in the healthy group, while the vaccinated COVID-19-negative group had normal thyroid hormone levels compared to controls. The correlation between TT3 and TSH levels gradually shifted from no association to a negative pattern in the unvaccinated COVID-19-positive group. Again, a highly significant negative correlation between TSH and TT3 was observed on days above 150, although a slight fluctuation was noted on day 90. This pilot study from Bangladesh shows that abnormalities in thyroid function can be observed during COVID-19 infection and after vaccination, which gradually recovers over time.


Subject(s)
COVID-19 , Hypothyroidism , Humans , Pilot Projects , Retrospective Studies , COVID-19/prevention & control , Triiodothyronine , Thyroxine , Thyrotropin , Thyroid Hormones
3.
Diagnostics (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2123544

ABSTRACT

In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.

4.
iScience ; 25(12): 105640, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2120448

ABSTRACT

Risk-assessing and controlling virus transmission from soil-rich post-washing water (PWW) are crucial during harvesting raw vegetables. However, viruses are normally difficult to concentrate because of their low concentrations and complex backgrounds. Here, ultrafiltration (UF), virus adsorption-elution (VIRADEL), and optimized paper filtration-coupled ultrafiltration (PFC-UF) methods were employed to evaluate the recovery of non-enveloped murine norovirus (MNV-1), hepatitis A virus (HAV), and enveloped human coronavirus 229E (HCoV-229E) from soil-rich PWW. Among the three methods, PFC-UF outperformed the other methods in the recovery of viruses from PWW with soil content. Under the highest soil condition with virus seeded at a titer of 102 plaque-forming unit (PFU) or TCID50, the PFC-UF method exhibited an exceedingly consistent recovery rate of 78.8 ± 13.3 (MNV-1) and 44.4 ± 25.2% (HAV). However, the recovery of enveloped HCoV-229E was inferior to non-enveloped viruses. Overall, PFC-UF provided a reliable method for recovering viruses in soil-rich PWW.

5.
Food Microbiol ; 110: 104164, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2068988

ABSTRACT

Since the first SARS-CoV-2 outbreak in Wuhan, China, there has been continued concern over the link between SARS-CoV-2 transmission and food. However, there are few studies on the viability and removal of SARS-CoV-2 contaminating food. This study aimed to evaluate the viability of SARS-CoV-2 on food matrices, depending on storage temperature, and inactivate the virus contaminating food using disinfectants. Two SARS-CoV-2 strains (L and S types) were used to contaminate lettuce, chicken, and salmon, which were then stored at 20,4 and -40 °C. The half-life of SARS-CoV-2 at 20 °C was 3-7 h but increased to 24-46 h at 4 °C and exceeded 100 h at -40 °C. SARS-CoV-2 persisted longer on chicken or salmon than on lettuce. Treatment with 70% ethanol for 1 min inactivated 3.25 log reduction of SARS-CoV-2 inoculated on lettuce but not on chicken and salmon. ClO2 inactivated up to 2 log reduction of SARS-CoV-2 on foods. Peracetic acid was able to eliminate SARS-CoV-2 from all foods. The virucidal effect of all disinfectants used in this study did not differ between the two SARS-CoV-2 strains; therefore, they could also be effective against other SARS-CoV-2 variants. This study demonstrated that the viability of SARS-CoV-2 can be extended at 4 and -40 °C and peracetic acid can inactivate SARS-CoV-2 on food matrices.


Subject(s)
COVID-19 , Disinfectants , Animals , Peracetic Acid/pharmacology , Salmon , SARS-CoV-2 , Lettuce , Chickens , Ethanol , Seafood , Disinfectants/pharmacology
6.
Food Control ; 143: 109306, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-1983072

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 269 million people and killed more than 5.3 million people worldwide. Although fomite transmission of SARS-CoV-2 has been continuously reported, few studies have been conducted on food contact surfaces. Therefore, this study aimed to investigate the viability of coronaviruses on food contact surfaces and to remove SARS-CoV-2 contaminated on food contact surfaces with disinfectants. At 20 °C, SARS-CoV-2 was inactivated within 48 h on all food contact surfaces. At 4 °C, it was inactivated at 48 h on kraft paper and 96 h on parchment paper, but it was viable up to 5 days in low-density polyethylene (LDPE). At -20 °C, SARS-CoV-2 did not decrease by even 1 log on all food contact surfaces until 5 days. Treatment with 70% ethanol or 1000 ppm sodium hypochlorite for 5 min was sufficient to completely remove SARS-CoV-2 from 6 food contact surfaces. Similarly, UV-C irradiation at 60 mJ/cm2 eliminated SARS-CoV-2 contaminated on food contact surfaces. Also, the wiping test showed that even wiping an area contaminated with SARS-CoV-2 with a cloth moistened with 70% ethanol or 1000 ppm sodium hypochlorite, it took 5 min to inactivate the virus. Our findings suggested that SARS-CoV-2 contaminated on food contact surfaces in local retail may be viable enough to be transported home. However, if the type and method of use of the disinfectant suggested in this study are followed, it is possible to sufficiently control the fomite transmission of SARS-CoV-2 through food contact surfaces at home.

7.
Curr Dev Nutr ; 6(5): nzac041, 2022 May.
Article in English | MEDLINE | ID: covidwho-1852960

ABSTRACT

Background: Reduced health and nutrition services as a result of coronavirus disease 2019 (COVID-19) measures endanger children's well-being. The Bangladesh Rajshahi Division of Maternal and Child Nutrition (BRDMCN; 2018-2020) involving social behavior change communication (SBCC) and an economic development (ED) of asset transfer was implemented. Objectives: This study describes how the implementation modality of the BRDMCN was adapted, and changes in the program's short/intermediate-term outcomes during the COVID-19 pandemic compared with pre-pandemic. Methods: The following evaluation components were assessed: 1) program fidelity, 2) program reach, 3) program acceptance, 4) perceived influence of COVID-19, and 5) short-term outcomes over the 3 y. We compared the first 2 y ("pre-COVID-19," from April 2018 through December 2019) and the final year ("during COVID-19," from January to December 2020) for all components except for (3) and (4). Data were collected through multiple sources: reviews of program annual progress reports, monitoring records of SBCC and ED programs, and cohort surveys (n = 1094). Results: The percentage dose delivery of activities decreased from 66.7-118% at pre-COVID-19 to 0-90% during COVID-19. The SBCC programs were altered to reduce the frequency of activities as well as the number of participants per session. The ED program involving large group meetings was modified to include within-member meetings, individual visits of community facilitators, or virtual discussions. Production activity using received assets continued during the pandemic, with no significant reduction compared with pre-COVID-19. The percentage of children recovering from underweight after 30 d of a Positive deviance/Hearth (PD/Hearth) session, a component of the SBCC program, remained constant at 16.5-20.3 percentage points before and during the COVID-19 pandemic. Conclusions: Program activities were scaled back and changed due to the pandemic. The BRDMCN maintained asset management and the degree of short-term outcomes over the course of a 3-y project. Further study is required to determine whether adaptive program management would achieve the long-term expected impact at a population level.

8.
Trends Food Sci Technol ; 109: 25-36, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014835

ABSTRACT

BACKGROUND: The COVID-19 pandemic that emerged in 2019 has imposed huge consequences, including economic losses and threats to human health, which are still affecting many aspects throughout the world. SCOPE AND APPROACH: This review provides an overview of SARS-CoV-2 infection, the cause of COVID-19, and explores its impact on the food supply system and food safety. This review examines the potential risk of transmission through food and environmental surfaces before discussing an effective inactivation strategy to control the COVID-19 pandemic in the aspect of food safety. This article also suggests effective food safety management post-COVID-19. KEY FINDINGS AND CONCLUSIONS: Respiratory viruses including SARS-CoV-2 are responsible for huge impacts on the global economy and human health. Although food and water are not currently considered priority transmission routes of SARS-CoV-2, infection through contaminated food and environmental surfaces where the virus can persist for several days cannot be ignored, particularly when the surrounding environment is unhygienic. This approach could help determine the exact transmission route of SARS-CoV-2 and prepare for the post-COVID-19 era in the food safety sector.

SELECTION OF CITATIONS
SEARCH DETAIL